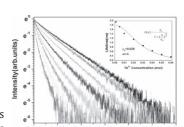
EL SEVIER EL SEVIER

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor



Graphical Abstracts/J. Fluorine Chem. 144 (2012) v-xii

Interionic cross relaxation and tunable color luminescence in KY₃F₁₀:Tb³⁺ nano/microcrystals synthesized by hydrothermal approach

Jinsu Zhang^a, Baojiu Chen^a, Zuoqiu Liang^a, Xiangping Li^a, Jiashi Sun^a, Ruixia Zhong^b, Lihong Cheng^a, Haiyang Zhong^a

- ^aDepartment of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China ^bDepartment of Materials Science and Engineering, Northeastern University at Qinhuangdao Branch,
- ▶ The hydrothermal (HT) approach is applied to synthesize KY_3F_{10} : Tb^{3+} phosphor. ▶ Emitting colors can be tuned from blue to green by increasing Tb^{3+} concentration. ▶ Luminescence dynamical process is detailedly analyzed. ▶ Electronic dipole–dipole interaction governs the dynamic CR process.

J. Fluorine Chem., 144 (2012) 1

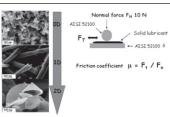
Tribological properties of fluorinated nanocarbons with different shape factors

N. Nomède-Martyr^{abc}, E. Disa^{ab}, P. Thomas^c, L. Romana^c, Jean-Louis Mansot^{cd}, M. Dubois^{ab}, K. Guérin^{ab}, W. Zhang^{abe}, A. Hamwi^{ab}

^aClermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF, UMR 6296), Inorganic Materials team. 63171 Aubière. France

bCNRS, UMR 6296, 63170 Aubière, France

Qinhuangdao 066004, PR China

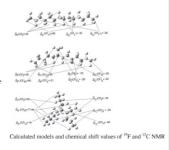

^cGroupe de Technologie des Surfaces et Interfaces (GTSI, EA 2432), Faculté des Sciences Exactes et Naturelles, Université des Antilles et de la Guyane, 97159 Pointe à Pitre Cedex, France

d'Entre Commun de Caractérisation des Matériaux des Antilles et de la Guyane (C³MAG), Faculté des Sciences Exactes et Naturelles, Université des Antilles et de la Guyane, 97159 Pointe à Pitre Cedex, France

^eEcole Centrale de Pékin, Beijing University of Aeronautics and Astronautics (BUAA), Road 37, HaiDian District, Beijing 100191, China

▶ Nanocarbonaceous materials with different shape factors were fluorinated using pure F_2 gas with similar fluorine contents. ▶ Structure and C—F bonding are similar at given fluorine content. ▶ The tribological properties of the fluorinated nanocarbons have been investigated and compared according to the shape factor.

J. Fluorine Chem., 144 (2012) 10


J. Fluorine Chem., 144 (2012) 17

Quantum chemistry calculations of branched fluorocarbon systems

L.N. Ignatieva^a, V.M. Bouznik^b

^aInstitute of Chemistry, FEBRAS, pr. 100 – letya Vladivostoka 159, Vladivostok 690022, Russia ^bA.A. Baikov Institute of Metallurgy and Material Science RAS, Leninsky pr. 49, Moscow 119334, Russia

- ▶ The processes of branch formation in the fluorocarbon chain molecules are studied by results of quantum-chemical calculations. ▶ The methods HF and DFT we used to calculate C_nF_{2n+2} molecules.
- ► The features of ¹³C and ¹⁹F NMR spectra to identify CF₃ branches, cross-linking and intersecting formations of the chains are revealed. ► The possible structures of branched entities were found.

The first fluorous biphase hydrogenation catalyst incorporating a perfluoropolyalkylether: $[RhCl(PPh_2(C_6H_4C(O)OCH_2CF(CF_3)(OCF_2CF(CF_3))_nF))_3]$ with n = 4-9

Chadron M. Friesen^a, Craig D. Montgomery^a, Sebastian A.J.U. Temple^b

^aDepartment of Chemistry, Trinity Western University, Langley, BC, Canada V2Y 1Y1

^bDepartment of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6

► A triarylphosphine ligand that incorporates the perfluoropolyalkylether.

► Polyhexafluoropropylene oxide with a -C(O)OCH₂- spacer is synthesized. ► A Wilkinson's catalyst derivative is synthesized with this ligand. ► The catalyst is employed as a Fluorous Biphase Catalyst for the hydrogenation of 2-cyclohexen-1-one. ► Turnover frequencies as well as partition coefficients and Rh leaching studies are reported.

pHFPO = $-CF(CF_3) - [OCF_2CF(CF_3)]_n - F_1 = 4 - 9$

J. Fluorine Chem., 144 (2012) 33

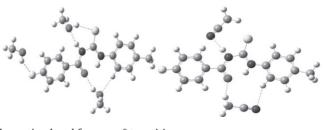
Reaction of nitroalkanes with polyfluoroaromatic compounds

R. Vaidyanathaswamy, K. Radha, M. Dharani, T.S. Raguraman, Rajdeep Anand

Projects and R&D, SRF Ltd., Manali Industrial Area, Manali, Chennai 600068, India

▶ Nucleophilic substitution of nitroalkyl carbanion occurs at para position of pentafluorobenzonitrile and methyl pentafluorobenzoate. ▶ The nitro compounds thus formed undergo tin hydride reduction and Nef reaction to give valuable products. ▶ In presence of base, the nitro compounds add on to Michael acceptors.

J. Fluorine Chem., 144 (2012) 38


Hydrogen bonding interactions in two isomers of fluorobenzoylthioureas and their absorption spectra

Wen Yang, Wei Zhu, Weiqun Zhou, Huanhuan Liu, Jianfen Fan

School of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China

▶ Crystal structures of two benzoylthiourea isomers were determined by X-ray diffraction method. ▶ Intra- and intermolecular hydrogen bonds affect each other in the crystals. ▶ The intramolecular hydrogen bonds broaden the UV absorption bands of $n \to \pi^*$ transition. ▶ The

intermolecular hydrogen bonds cause to unusual blue shifts of the UV absorption band for $\pi \to \pi^*$ transition.

J. Fluorine Chem., 144 (2012) 45

Novel SO₃H-functionalized ionic liquids catalyzed a simple, green and efficient procedure for Fischer indole synthesis in water under microwave irradiation

Bai Lin Lia, Dan-Qian Xub, Ai Guo Zhonga

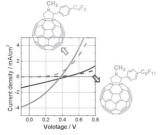
^aDepartment of Pharmaceutical and Chemical Engineering, Taizhou College, Linhai Zhejiang 317000, PR China

NHNH₂HCl O
$$R_3$$
 R_2 R_3 R_4 R_2 R_3 R_4 R_5 R_5 R_6 R_8 R_8 R_8 R_8 R_8 R_9 R_9

Reusable Aqueous Catalytic System

bState Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, PR China

▶ The whole process was performed in water without using any organic solvents. ▶ The reaction–separation–recycle process was quite convenient. ▶ The catalytic system of $[(HSO_3-p)_2im][CF_3SO_3]/H_2O$ could be reused directly.

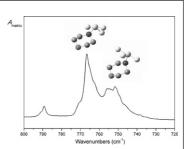

Buckminsterfullerene derivatives bearing a fluoroalkyl group for use in organic photovoltaic cells

Makoto Karakawa^a, Takabumi Nagai^b, Tomomi Irita^b, Kenji Adachi^b, Yutaka Ie^a, Yoshio Aso^a

^aDepartment of Soft Nanomaterials, Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

^bFundamental Technology Group, Chemical R&D Center, Daikin Industries, Ltd., 1-1 Nishi Hitotsuya, Settsu, Osaka 566-8585, lanan

▶ We synthesized six novel fluoroalkyl fullerene derivatives. ▶ Photovoltaic cells using the fullerene derivatives were characterized. ▶ The cell performances were notably affected by the substituents on the fullerenes. ▶ This is the first example of the use of fluoroalkyl fullerenes for the solar cells.


Morpholine sulfur trifluoride: Vibrational spectra, conformational properties and crystal structure

Andrea Flores Antognini^a, Norma L. Robles^a, Edgardo H. Cutin^a, Eduard Bernhardt^b, Markus Hirschberg^b, Xiaoqing Zeng^b, Helge Willner^b, Heinz Oberhammer^c

^aINQUINOA (CONICET-UNT) Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, (4000) Tucumán, Argentina

^bFB C, Anorganische Chemie, Bergische Universität Wuppertal, Gaußstrasse 20, 42119 Wuppertal, Germany ^cInstitut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany

▶ Morph-SF₃ exists in the gas phase as a mixture of two conformers: equatorial and axial. ▶ Ar matrix IR spectra show an unexpected temperature independent conformational equilibrium. ▶ The equatorial conformer is the only form present in the crystal (X-ray crystallography).

J. Fluorine Chem., 144 (2012) 59

J. Fluorine Chem., 144 (2012) 65

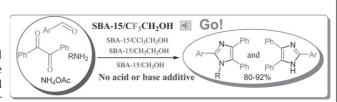
Boron difluoride complexes of carbamoyl Meldrum's acids

Natalia Pawelska^a, Łukasz Ponikiewski^b, Sławomir Makowiec^a

^aDepartment of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

^bDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

► The new type of carbamoyl Meldrum's acids derivatives have been revealed. ► The structure of the new compounds were confirmed with X-ray crystallography. ► Prepared complexes are stable and easily isolable. ► Other derivatives of Meldrum's acids was examined.

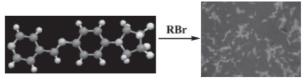

J. Fluorine Chem., 144 (2012) 69

SBA-15/TFE (SBA-15/2,2,2-trifluoroethanol) as a suitable and effective metal-free catalyst for the preparation of the tri- and tetra-substituted imidazoles via one-pot multicomponent method

Sadegh Rostamnia, Ali Zabardasti

Organic and Nano Group (ONG), Department of Chemistry, University of Maragheh, P.O. Box 14115-175, Maragheh, Iran

► Un-functionalized SBA-15 mesoporous and 2,2,2-trifluoroethanol (SBA-15/TFE). ► Imidazole production via 3-CR is reported. ► A reusable porous catalyst system using commercially available fluorinated alcohol was employed. ► Represents advantages, operational simplicity, higher yield and with easy workup.


Pyridinium-based ionic liquid crystals with terminal fluorinated pyrrolidine

Jingqi Tao^a, Junwen Zhong^a, Peilian Liu^a, Stelck Daniels^c, Zhuo Zeng^{ab}

^aCollege of Chemistry & Environment, South China Normal University, Guangzhou 510006, China

bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

^cDepartment of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA

Ionic Liquid Crystals with Fluorinated Pyrrolidine

▶ Novel pyridinium-based fluorinated ionic liquid crystals were synthesized. ▶ These compounds show a wide mesophase range and are stable to high temperatures. ▶ The mesophase behavior is affected by the configuration of the heterocycle. ► Fluorinated azepine causes the liquid crystal properties to disappear.

J. Fluorine Chem., 144 (2012) 79

Siloxane based syntheses of fluorous ethenes and their tandem Heck reactions with aryl iodides

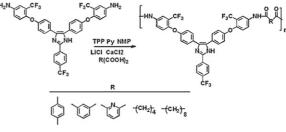
Ágnes Csapó, József Rábai

Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518, Budapest 112, Hungary

▶ Perfluoroalkyl-ethenes are formed by the TBAF-3H₂O or KF/NEt₃/H₂O treatment R_{fri} of organosilicons in DMF. ▶ Tandem-Heck coupling reactions using fluorous silanes as

$$R_{fn}$$
 R_{fn} R_{fn} R_{fn} R_{fn} R_{fn} R_{fn} R_{fn} R_{fn}

R_{fn}-I


olefin precursors were performed. > A silica supported 'perfluorooctyl-ethene surrogate' was synthesized and applied for a Heck coupling reaction.

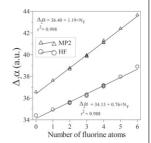
Novel para-linked and CF₃-substituted poly(amide-ether-imidazole)s: Solubility, optical and thermal properties

Mousa Ghaemy, Farshad Rahimi Berenjestanaki

Polymer Chemistry Research Laboratory, Department of Chemistry, Mazandaran University, Babolsar, Iran

► New class of poly(amide-ether-imidazole)s containing CF₃ groups were prepared by direct polycondensation. ► The fluoropolymers were characterized and their properties such as viscosity, solubility, thermal and photophysical were investigated. ▶ These polymers with different functional groups in the backbone showed fluorescence emission with excellent solubility and suitable thermal stability.

I. Fluorine Chem., 144 (2012) 94


J. Fluorine Chem., 144 (2012) 86

Dipole (hyper)polarizabilities of fluorinated benzenes: An ab initio investigation

Andrea Alparone

Department of Chemistry, University of Catania, Viale A. Doria 6, Catania 95125, Italy

► We computed dipole moments and (hyper)polarizabilities of fluorobenzenes. ► Polarizability anisotropy is linearly related to the number of fluorine atoms. > Hyperpolarizability differences among isomers are elucidated using density analyses.

The Regio-specific solvent controlled asymmetric Strecker reaction of trifluoromethyl α,β -unsaturated *N-tert*-butanesulfinyl ketimines with trimethylsilyl cyanide

Xiao-Ming Yuan^a, Jian Xu^a, Zhen-Jiang Liu^c, Xian-Jin Yang^{ab}, Li-Min Wang^{ab}, Yan Zhang^a, Xue-Yan Yang^a, Xiao-Peng He^a, Jin-Tao Liu^b ^aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China ^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China ^cSchool of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China

▶ The reaction of chiral *N-tert*-butanesulfinyl ketimines with TMSCN was studied. ▶ Different diastereoselectivities were obtained in terms of the solvents used. ▶ In c-hexane, d.r. (2a:3a) of the addition products is up to 1:17. ▶ In DMF, a reversed diastereoselectivity was observed with up to 145:1 d.r. (2a:3a).

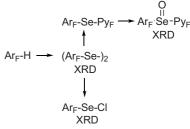
J. Fluorine Chem., 144 (2012) 108

New structural units in molybdenum oxyfluoride chemistry

David W. Aldous, Philip Lightfoot

School of Chemistry and EaStChem, University of St. Andrews, St. Andrews, Fife KY16 9ST, UK

► A facile route to novel reduced molybdenum oxyfluorides. ► New dimer and tetramer units containing Mo—Mo bonds. ► First example of a reduced, infinitely extended molybdenum oxyfluoride.


J. Fluorine Chem., 144 (2012) 118

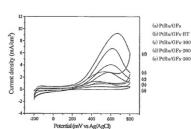
New polyfluorinated aromatic and aza-aromatic diselenides, selenyl chlorides, non-symmetric selenides and selenoxides

Arkady G. Makarov, Alexander Yu. Makarov, Irina Yu. Bagryanskaya, Makhmut M. Shakirov, Andrey V. Zibarev

Institute of Organic Chemistry, Russian Academy of Sciences, 630090 Novosibirsk, Russia

▶ New polyfluorinated ArSeSeAr synthesized in 3 steps in one-pot reaction from ArH. ▶ New ArSeCl were obtained from corresponding ArSeSeAr with use of Cl_2 . ▶ Highly reactive [ArSe $^-$ Na $^+$] generated *in situ* and reacted with C_6F_5N to give $ArSePy_F$. ▶ $ArSePy_F$ were oxidized with $KMnO_4$ to chiral $ArSe(=O)Py_F$.

J. Fluorine Chem., 144 (2012) 124

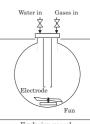

Effect of fluorine-oxygen mixed gas treated graphite fibers on electrochemical behaviors of platinum-ruthenium nanoparticles toward methanol oxidation

Soo-Jin Parka, Yongju Jungb, Seok Kimc

^aDepartment of Chemistry, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-751, South Korea ^bDepartment of Applied Chemical Engineering, Korea University of Technology and Education, 307, Gajeon-ri, Byeongcheon, Cheonan-si, Chungnam-do 330-708, South Korea

^cSchool of Chemical and Biomolecular Engineering, Pusan National University, San 30, Jangjeon-dong, Gemjeong-gu, Busan 609-735, South Korea

▶ PtRu particles were deposited on fluorine–oxygen mixed gas-treated graphite nanofibers. ▶ Gas treatment temperature was changed to modify surface characteristics. ▶ The catalyst showed the improved activity using treated graphite nanofibers. ▶ Activity was dependent on particle size and specific surface area of catalysts.



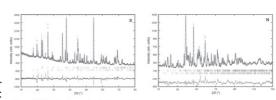
Effects of temperature and humidity on the flammability limits of several 2L refrigerants

Shigeo Kondo, Kenji Takizawa, Kazuaki Tokuhashi

National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan

► Effects of temperature and humidity on the flammability limits of 2L refrigerants were investigated. ► Temperature effect on NH₃, R32, and R143a is explainable by White's rule, but not for 1234yf and -ze. ► Humidity does not affect the flammability limits of NH₃, R32, and R143a. ► Flammability of 1234yf and -ze is markedly enhanced by humidity due to catalytic effect.

Explosion vessel


The study of the system Na₃AlF₆-FeF₃

František Šimko^a, Ondrej Prítula^a, Aydar Rakhmatullin^b, Catherine Bessada^b
^aInstitute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36
Bratislava, Slovakia

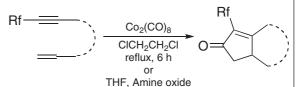
^bConditions Extrêmes et Matériaux: Haute Température et Irradiation CNRS, 1D av. de la Recherche Scientifique, 450 71 Orléans, France

- ► FeF₃ dissolves in the Na₃AlF₆ melt in the form of various solid solutions.
- ► System with 25 mol% FeF₃ contains crystalline phases in weight ratio: $64.8 \pm 2.8\%$ of Na₃(Al_xFe_y)F₆ and $35.2 \pm 2.7\%$ of Na₅(Al_xFe_y)₃F₁₄, respectively.
- Non-ferrous unique volatile product originates in the system Na_3AlF_6 -FeF₃.
- ▶ It confirms Fe^{3+}/Al^{3+} substitution but not the traditional view of forming FeF_6^{3-} species in AlF_6^{3-} melts.

J. Fluorine Chem., 144 (2012) 137

Rietveld fits for the calculations with the X-ray (X) and the neutron (N) diffraction patterns

Sample $Na_3AlF_6 + 25$ mol% FeF_3 : Crystalline phases of solid solutions in weight ratio $(64.8\pm2.8)\%$ of $Na_3(Al_Fe_\nu)F_6$ and $(35.2\pm2.7)\%$ of $Na_5(Al_Fe_\nu)_3F_{14}$, respectively.

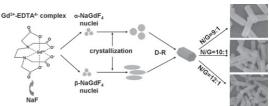

J. Fluorine Chem., 144 (2012) 147

A novel synthesis of fluorine-containing cyclopentenones *via* Pauson–Khand reaction

Tsutomu Konno, Takumi Kida, Akinori Tani, Takashi Ishihara

Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

► Intermolecular PKR was done by using fluoroalkylated alkynes with 2-norbornene. ► Reaction at the reflux gave the cyclopentenones as a diastereomeric mixture. ► Intramolecular PKR was carried out by using teminal enyne compounds. ► Reaction proceeded smoothly in the presence of amine oxide. ► Allyl CF₃-propargyl ethers afforded adducts as a single isomer.

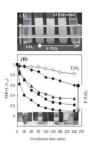

J. Fluorine Chem., 144 (2012) 157

Controllable synthesis, upconversion luminescence, and paramagnetic properties of $NaGdF_4$: Yb^{3+} , Er^{3+} microrods

Zhe Chen, Zhenyu Liu, Ye Liu, Kezhi Zheng, Weiping Qin

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

► Well-shaped single-crystal NaGdF₄ microrods are first prepared. ► The effects of varied reaction conditions on products are all studied in detail. ► Size-dependent upconversion luminescence is discussed. ► Paramagnetic properties of microrods with different size are also discussed.

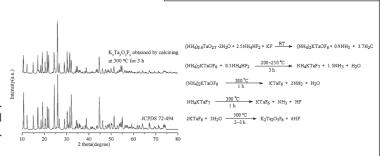

J. Fluorine Chem., 144 (2012) 171

Enhanced dispersion stability and photocatalytic activity of TiO₂ particles fluorinated by fluorine gas

Jae-Ho Kima, Fumihiro Nishimuraa, Susumu Yonezawab, Masayuki Takashimab

^aDepartment of Materials Science and Engineering, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan ^bCooperative Research Center, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

► Fluorinated TiO_2 (F- TiO_2) particles were prepared using fluorine gas. ► F- TiO_2 particles indicated good dispersion stability better than pure TiO_2 particles in various solvents. ► Degradation ratio of methylene blue (MB) with F- TiO_2 was much higher than that of untreated TiO_2 . ► Absorption wavelength range of F- TiO_2 particles expanded to 500 nm.



Low-temperature synthesis of K₂Ta₂O₃F₆

Cuihua Lin, Heng Jiang, Hong Gong, Tingting Su, Zhengyi Zhang, Wenguang Liu

School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, China

- ightharpoonup K₂Ta₂O₃F₆ can be obtained by fluorination reaction at 300 °C.
- ► The intermediates are assumed to be $(NH_4)_2KTaOF_6$ and NH_4KTaF_7 . ► Their thermal decomposition resulted in KTaF6.
- ► Hydrolysis of KTaF₆ produces K₂Ta₂O₃F₆.

Soluble copoly(aryl ether ether ketone ketone)s containing xanthene and hexafluoroisopropylidene moieties

Fu-Lin Yao, Sheng-Ri Sheng, Jian-Wen Jiang, Xiao-Ling Liu, Cai-Sheng Song

College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China

► Four new PEEKK copolymers containing xanthene and hexafluoroisopropylidene moieties were synthesized. ► These PEEKKs exhibited good solubilities, mechanical and thermal properties, especially higher glass transition temperatures. ► Introduction of hexafluoroisopropylidene units into the polymers afforded them low dielectric constants and high optical transparency.

J. Fluorine Chem., 144 (2012) 176

J. Fluorine Chem., 144 (2012) 182

The nonisothermal crystallization kinetics of surface fluorinated polypropylene/polypropylene blend

Weihong Guo^a, Lei Gao^a, Guanlong Chen^a, Yan Zhang^a, Haoming He^c, Tian Xie^c, Sanke Yang^c, Shimin Ding^a, Xianjin Yang^{abc}

^aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China ^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China ^cWengfu Group Co. Ltd., Guizhou 550000, China

► The surface fluorinated polypropylene/PP blend was prepared. ► The nonisothermal crystallization kinetics properties of the blend were studied. ► DSC shows the incompatibility of surface fluorinated polypropylene and PP is good. ► Introducing fluorine into PP leads to its T_0 , T_c and ΔE increasing. ► Mo equation supplies a reasonable description for its crystallization behavior.

$FSG-Hf(NPf_2)_4$ catalyzed, environmentally benign synthesis of 1,8-dioxo-decahydroaridines in water-ethanol

Mei Hong, Guomin Xiao

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China

► Fluorous silica gel supported Hf(NPf₂)₄ was prepared. ► 1,8-Dioxo-decahydroacridines were synthesized in the presence of FSG-Hf(NPf₂)₄. ► FSG-Hf(NPf₂)₄ can be recovered and reused without significant loss of activity.

CHO O
$$+$$
 R²NH₂ or NH₄OAc $C_2H_5OH-H_2O$, reflux

J. Fluorine Chem., 144 (2012) 114

 $R^3 = H \text{ or } R^2$

9 up to 76% yield

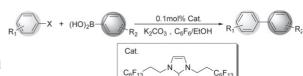
New approach to 3,3-difluoroallyl alcohol

Masaaki Omote^a, Tatsuya Miake^a, Atsushi Tarui^a, Kazuyuki Sato^a, John T. Welch^b, Itsumaro Kumadaki^a, Akira Ando^a

^bDepartment of Chemistry, The University at Albany – SUNY, 1400 Washington Ave., Albany, NY 12222, United States

^aFaculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata 573-0101, Japan

► This is the first synthesis of 4,4-difluoro-3-(triethylsilyl) but-3-en-1-ol (1). ► 1 generates 2,2-difluorovinylanion by treatment of 1 with NaH. ► The generated 2,2-difluorovinylanion attacks to aldehydes. ► 1 serves good building block for introducing 2,2-difluorovinyl unit.


J. Fluorine Chem., 144 (2012) 143

A novel system for the Suzuki cross-coupling reaction catalysed with light fluorous palladium–NHC complex

Hong Yu, Li Wan, Chun Cai

Chemical Engineering College, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China

► A novel Pd-NHC catalyst containing fluorous tags was prepared and characterized. ► Suzuki reactions were carried out in co-solvent and high yields were obtained. ► The catalyst could be reused three times without significant loss of activity.

CI-Pd-CI